1) (25) Consider the circuit below.

a) Find the Thevenin equivalent circuit (i.e. Thevenin voltage and Thevenin impedance) from terminals a to b.

b) Determine the impedance Z_L from terminals a to b that will result in the largest average power delivered to Z_L. Calculate this maximal average power delivered to Z_L.

![Circuit Diagram]
2) (24) For each of the following two circuits find the transfer function and step response.

a) \(H(s) = \frac{I_o(s)}{I_i(s)}. \)
b) $H(s) = \frac{V_o(s)}{V_i(s)}$.
3) (27) Consider the circuit below with input voltage V and output voltage G. Other voltages are given by D, E, and F.

a) Write matlab code to determine the transfer function $H(s) = G(s)/V(s)$. Do not solve for the transfer function. (Hint: Write four node equations to solve for voltages D, E, F, and G.)

b) Determine the value of the transfer function $H(s)$ at very high and very low frequencies from physical arguments.
1) (25) Consider the circuit below.

a) Find the Thevenin equivalent circuit (i.e. Thevenin voltage and Thevenin impedance) from terminals a to b.

b) Determine the impedance Z_L from terminals a to b that will result in the largest average power delivered to Z_L. Calculate this maximal average power delivered to Z_L.

2) (24) For each of the following two circuits find the transfer function and step response.

a) \(H(s) = I_o(s)/I_i(s) \).
b) \(H(s) = \frac{V_o(s)}{V_i(s)} \).
3) (27) Consider the circuit below with input voltage V and output voltage F. Other voltages are given by D, E, and G.

a) Write matlab code to determine the transfer function $H(s) = F(s)/V(s)$. Do not solve for the transfer function. (Hint: Write four node equations to solve for voltages D, E, F, and G.)

b) Determine the value of the transfer function $H(s)$ at very high and very low frequencies from physical arguments.