Kernel Characterization

A function $K: X \times X \Rightarrow \mathbb{R}$ are called kernel functions

Which is either continuous or has a countable domain, can be decomposed $K(x,z) = \langle \phi(x), \phi(y) \rangle$ and $K(x,z) = K(z,x)$ is symmetric and positive semi-definite

Input space

X

Feature space

Φ

$\phi(x)$

Direct

Inner products

Kernels

$K(x,y) = \langle \phi(x), \phi(y) \rangle$
Examples of Kernel Functions

- Polynomial Kernel of order \(p \): \(K(x,z) = (x^Tz)^p \)
- Polynomial Kernel of order \(\leq p \): \(K(x,z) = (x^Tz+1)^p \)
- Gaussian Kernel: \(K(x,z) = \exp\left(-\frac{||x-z||^2}{2\sigma^2}\right) \)
- Sigmoidal Kernel: \(K(x,z) = \tanh(ax^Tz - b) \) for some values of \(a \) and \(b \)
- Bilinear transformation: \(K(x,z) = f(x)f(z) \)
- Other kernels: splines, strings, \(K(x,z) = \min(x,z) \)
- Can have nonnumeric kernels (e.g. bioinformatics)
Support Vector Machine

Optimal margin classifier with slack variables and kernel functions described by Support Vector Machine (SVM).

\[
\min_{(w, \xi)} \frac{1}{2}||w||^2 + C \sum \xi_i \\
\text{subject to } \xi_i \geq 0 \forall i, d(i) (w^T \phi(x(i)) + b) \geq 1 - \xi_i, \forall i, \text{ and } C>0.
\]

(Hinge loss function)

In dual space

\[
\max W(\alpha) = \sum \alpha(i) - \frac{1}{2} \sum \alpha(i)\alpha(j) d(i)d(j) K(x(i),x(j)) \\
\text{subject to } C \geq \alpha(i) \geq 0, \text{ and } \sum \alpha(i)d(i)= 0.
\]

Weights can be found by \(w = \sum \alpha(i) d(i) \phi(x(i)) \).
Representation of decision surface

- In primal space decision surface is a linear hyperplane in feature space and can be represented as
 \[f(x) = \text{sgn} \left(\mathbf{w}^T \phi(x(i)) + b \right) \]

- In dual space decision surface can be represented via kernels and Lagrange multipliers as
 \[f(x) = \text{sgn} \left(\sum \alpha_i d(i) K(x, x(i)) + b \right) \]
Least Squares SVM Regression

Consider changing SVM to LS SVM by making following modifications:

\[\min_{(w,e)} \frac{1}{2} \|w\|^2 + \frac{1}{2} C \sum e(i)^2 \]

subject to \(d(i) - (w^T \Phi(x(i)) + b) = e(i), \forall i, \) and \(C > 0.\) Note that \(e(i)\) is error term.

Key differences with between SVM and LS SVM:

- \(\varepsilon\)-insensitive cost replaced by quadratic error cost.
- Inequality constraint replaced by equality constraint.
Primal Solution

Substitute for e_i and take partial derivatives of objective function with respect to w and b and set to 0. This yields least square solution given by

$$(R(m) + I/mlC))w = P(m)$$

$$m_X (m)^T w + b = m_Y (m)$$

where $m_X (m)$ and $m_Y (m)$ are sample means of $\Phi(X)$ and Y respectively. $R(m)$ and $P(m)$ are sample autocorrelation of $\Phi(X)$ and crosscorrelation of $\Phi(X)$ and Y respectively.

If $(R(m) + I/(mC))$ is nonsingular we have that

$$w = (R(m) + I/(mC))^{-1} P(l)$$

giving MSE solution plus regularization term.
Finding Dual Solution

Introduce Lagrange multipliers

\[L(w,b,e,\alpha) = \frac{1}{2}||w||^2 + \frac{1}{2}C \sum e(i)^2 \]
\[- \sum \alpha(i) (d(i) - (w^T \Phi(x(i)) + b) - e(i)) \]

where \(\alpha(i) \geq 0 \).
KKT Conditions

Again take partial derivatives and set to 0.
\[\frac{\partial L(w,b,e,\alpha)}{\partial w} = 0, \frac{\partial L(w,b,e,\alpha)}{\partial b} = 0, \]
\[\frac{\partial L(w,b,e,\alpha)}{\partial \alpha} = \frac{\partial L(w,b,e,\alpha)}{\partial e} = 0. \]

We therefore have that
\[w = \Sigma \alpha(i)\Phi(x(i)) \]
\[\Sigma \alpha(i) = 0 \]
\[\alpha(i) = C e(i), \quad 1 \leq i \leq m \]
\[d(i) - (w^T \Phi(x(i)) + b) - e(i)) = 0, \quad 1 \leq i \leq m \]
Dual Solution to LS SVM

Let α be vector of Lagrange multipliers and d be vector of outputs then solution has following form:

$$
\begin{bmatrix}
0 & 1^T \\
1 & K+I/C
\end{bmatrix}
\begin{bmatrix}
b \\
\alpha
\end{bmatrix}
=
\begin{bmatrix}
0 \\
d
\end{bmatrix}
$$

where $K(x,z) = \Phi(x)^T \Phi(z)$ and denotes l vector of 1s.

$$f(x) = \sum \alpha(i) K(x,x(i)) + b$$
Comments about LS SVM

- Solution to LS SVM depends on d, dimensionality of feature space $\Phi(x)$ in primal space and m, number of training samples in dual space.
- Both solutions involve solving a set of linear equations. Work in space that has lower dimension.
- Adaptive on-line solutions can now be implemented.
- Algorithm easily constructed for pattern classification problems.
- In dual space, practically all input training examples are support vectors as Lagrange multipliers, α are proportional to error, e.
LS Kernel method solution

• Solution in primal or dual space involves a solution to a set of respectively \((m+1, d+1)\) linear equations.
• Dual space solution: unlike SVM solution all input training examples are support vectors
• Objectives: want good performance with low to moderate computational complexity
 – Sparseness: reduced system, subspace method
 – On-line versus batch
 – Criteria for choosing SV
 – Approximate methods: kernel LMS
 – Distributed learning, complex vectors
 – Numerical stability: matrix computations
Kernel or Gram Matrix

Let K be kernel matrix of all training data. Reduce computations by considering a subset of K.
• K is symmetric and in many cases has eigenvalues that decay exponentially.
• Here K_{SS} is $m_s \times m_s$ where $m_s << m$.
• Let $K_S = [K_{SS} \ K_{SN}]$.
 • Reduced system methods work with K_{SS}
 • Subspace methods work with K_S

\[
K = \begin{pmatrix}
K_{SS} & K_{SN} \\
K_{NS} & K_{NN}
\end{pmatrix}
\]
Subspace Methods

- Reduced system method use $m_S \ll m$ training examples $\Phi(X_S)$ resulting in kernel matrix $K_{SS} = \Phi(X_S) \Phi(X_S)^T$, but algorithm only uses a subset of information from kernel matrix K
- Subspace methods restrict weight to lie in subspace of m_S training examples, $w = \Phi(X_S) \alpha$
 - Information matrix $A = (K_{SS}/C + K_S K_S^T)$ where $K_S = \Phi(X_S) \Phi(X)^T$ contains much more information than just K_{SS}
 - Information matrix dimensionality is still m_S
 - Higher complexity, but improved performance
Subspace LS regression equations

Optimization Problem:

$$\min_{(w,e)} \frac{1}{2} ||w||^2 + \frac{1}{2} C \sum e(i)^2$$

subject to

$$y(i) - (w^T \Phi(x(i)) + b) = e(i), \forall i$$

$$w = \Phi(X_S) \alpha.$$

Solution:

$$A = (K_{SS}/C + K_S K_S^T) (m_S \text{ by } m_S)$$

$$A\alpha + K_S 1b = K_S y$$

$$1^T K_S^T \alpha + mb = 1^T y$$
Estimated Outputs

• Solve linear equations to find α and b. If A is invertible

Estimated output in primal space is

$$\hat{y}(x) = \phi(x)^T w + b,$$

where $w = \Phi(X_S) \alpha$, or in dual observation space

$$\alpha = A^{-1} K_S (y - 1b) \quad \text{and} \quad b = \frac{1^T y - 1^T K_S^T A^{-1} K_S y}{m - 1^T K_S^T A^{-1} K_S 1}$$

where

$$\hat{y}(x) = K(x, x_S) \alpha + b,$$

$$K(x, x_S) = \phi(x)^T \Phi(x_S).$$
LS Kernel Related Research

- Kernel Ridge Regression
- Kernel Fisher Discriminant Analysis (pattern recognition problems)
- Radial Basis Functions
- Gaussian Processes
- Kriging
Data Processing K_S

- Support vectors
- Information vectors
- Kernel data
- New data
- Delete SV
- Add SV
- Delete data
Information vectors (finding A^{-1})

- Effect of adding and deleting information vectors
- Computing A^{-1} based on new information relies on using Sherman Morrison Woodbury formula given by

$$ (A + uv^T)^{-1} = A^{-1} - A^{-1}u (I + v^T A^{-1}u)^{-1} v^T A^{-1} $$

where $A = (K_{SS}/C + K_S K_S^T)$.

Here hn is new kernel vector to be added (compute kernels between new input and SVs) and ho is old kernel vector to be deleted

$u = [hn \ ho]$ and $v = [hn \ -ho]$
Support Vectors (finding A^{-1})

- Effect of adding a SV. This increases dimensionality of matrix A by 1.
- Computing A^{-1} based on new information relies on inverting block matrices given by

$$
\begin{pmatrix}
A & c \\
c & d
\end{pmatrix}^{-1} = \begin{pmatrix}
A^{-1} & 0 \\
0 & 0
\end{pmatrix} + v v^T r
$$

where $v = [A^{-1} c ; -1]$ and $r = d - c^T A^{-1} c$. Here A is matrix with information vectors updated, c and d are new kernel information, and r gives information about degree of independence.
Criteria for choosing SV

- Random updates
- Time updates
- Update based only on inputs
- Training error based criteria: update based on inputs and outputs
- Training based on information about problem
Algorithms for choosing SV

Choose training examples that give the most information.

• Training based error: choose SV that can reduce training error
• Information based criteria: Renyi Information
• Approximate Linear Dependence (ALD): depends only on inputs, choose inputs that are almost linearly independent from other inputs
• Surprise criteria: Information based criterion based on modeling training examples as Gaussian processes
• Coherence criteria: low cost criteria examining maximum absolute kernel value between new and old inputs
Number of SVs

- For criteria (e.g. coherence and ALD) the number of SVs chosen remains finite as number of training examples grows large.
- Must also control amount of information vectors to control complexity
- Deletion of SVs can be helpful to improve performance and when functions to be learned change with time
- Increasing number of SVs by changing selection criteria parameters can lead to improved performance, but with higher computational costs
Simpler Approximate Algorithms

- RLS kernel algorithms have good performance, but complexity is not low, $O(m^2)$ operations per update
- Recently class of kernel LMS algorithms have appeared where complexity is $O(m)$ operations per update
 - Primal kernel LMS
 - Dual kernel LMS
 - Kernel Affine Projection algorithm
Primal Kernel LMS Algorithm

- Work by Liu, Pokharel, Principe
- Estimate: \(f(x) = w^T \Phi(x) \)
- Error: \(e = y - f(x) \)
- Algorithm
 - Initialization: \(w(0) = 0 \);
 - Iterative update: if example satisfies criteria update
 \[
 w(k+1) = w(k) + \eta e(k) \Phi(x(k))
 \]
 \[
 e(k) = y(k) - w(k)^T \Phi(x(k)) = y(k) - \sum_{1 \leq i \leq k-1} \eta e(i) K(x,x(i))
 \]
- For support vectors \((x(i), 1 \leq i \leq m) \) estimate given by
 \[
 f(x) = \sum_{1 \leq i \leq m} \eta e(i) K(x,x(i))
 \]
Comments about algorithm

- Algorithm performs LMS in feature space, but computations may have to be done in dual space.
- Algorithm does not need regularization and converges for proper step sizes η.
- Each $\alpha(i) = \eta \, e(i)$ is computed one time and is then fixed. Compactly we have $\alpha = \eta \, (I + \eta L)^{-1} \, y$ where L is the lower triangular kernel matrix with:

$$
L = \begin{bmatrix}
0 & 0 \\
K(2,1) & 0 \\
\vdots & \vdots \\
K(m,1) & \ldots \ldots \ldots \ldots K(m,m-1) & 0
\end{bmatrix}
$$
Dual Kernel LMS

- Work by Richard, Bermudez, and Honeine
- Consider least squares subspace problem in observation space with zero bias and no regularization.
- Solution given by finding α to minimizing $||A\alpha - d||^2$ with $A = K_S K_S^T$ and $d = K_s y$.
- Alternative method to finding solution is applying a modified LMS algorithm directly in dual space. Here input is given by kernel vector
- $h(x) = (K(z(1), x), \ldots K(z(j), x))^T$ where $z(1), \ldots, z(j)$ are current SVs and output given by $y(x)$.
Dual Kernel LMS Algorithm

1) Initialization of algorithm
2) Get current kernel vector \(h(x(k)) \) and test coherence
3) If \(h(x(k)) \) has small coherence current input \(x(k) \) becomes a SV and set of SVs are augmented and weight vector \(\alpha \) dimensionality is increased by one

\[
S = S + \{x(k)\}
\]
\[
\alpha(k+1) = [\alpha(k); 0]
\]
4) Update weights, \(\alpha(k+1) = \alpha(k) + \eta e(k)h(x(k)) \)
5) Increment \(k \) and go to 2)
Algorithm Comments

- Richard, Bermudez, and Honeine examine KNLMS with weight magnitudes bounded.
- They add a regularization term ε, creating slightly different problem than subspace optimization problem.
- Coherence criteria has $\mathcal{O}(m)$ operations, but other criteria can easily be used.
- This algorithm focuses on updating weights based on current input.
- Kernel Affine Projec(tion) (KAP) is a generalization updating weights based on k most recent inputs.
Example 1: Noisy sinc function

Considered LS-SVM regression problem, formulation similar to LS-SVM classification

\[d = \text{sinc}(t) + v \]

Using subspace methods and intelligent updating we can get roughly same performance with ten chosen SVs as 100 random points using LS SVM.

Noise has deviation \(\sigma = 0.7 \) and \(C = 1.1 \). Trained LS SVM (MSE = 0.0109) and subspace method (MSE = 0.0108). Kernel eigenvalues decrease at an exponential rate.

Subspace method has higher deviation than LS SVM.
LS SVM and Subspace MSE
Sinc approximation with 10 SV
Example 2: Time Series Prediction

- Nonlinear random time series
- Initial Conditions: $d(1)=d(2)=.1$
- Discrete time system
 \[
 d(k) = (0.8 - 0.5 \exp(-d(k-1)^2))d(k-1) \\
 - (0.3+\exp(-d(k-1)^2))d(k-2) + 0.1 \sin(\pi d(k-1)) + v(k)
 \]

$v(k)$ is AWGN deviation .1. Used Gaussian kernels, coherence criteria, and (KRLS, KLMS) algorithms
KRLS vs KNLMS

$m_s \approx 25$, 200 simulations averaged KNLMS runs three times faster than KRLS
KNLMS (different coher. thresholds)

\[\mu_0 = 0.3, 0.5, 0.7 \] yields \(m_s \approx 16, 25, 45 \) and \(t_t = 350s, 510s, 840s \).
KRLS with different window sizes
Suite of Online Kernel Algorithms

- KRLS, KAP, KLMS
- Criteria for choosing SVs
- Choose number of information vectors
- Adjust parameters of algorithm: type of kernel used, regularization parameter, step size

Powerful nonlinear adaptive online algorithms where you can tradeoff performance for complexity