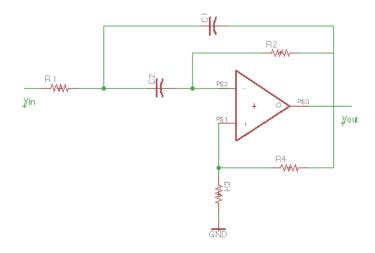
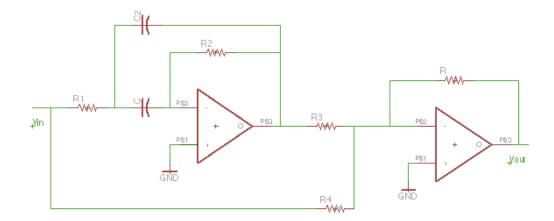

$\begin{array}{c} {\rm EE213~Exam~1}\\ {\rm March~12,~2014} \end{array}$ Closed Book, Justify all work unless otherwise instructed.

Good Luck


NAME	
student ID number	

1	/25
2	/25
3	/25
4	/25
TOTAL	/100


- 1) (25) Consider the following circuit with $R_1 = 10\Omega$, $R_2 = 10\Omega$, $C_1 = 10mF$, and $L_1 = 1H$, and input voltage $v_{in}(t) = 10\cos(10t)$.
- a) Find the Thevenin equivalent circuit (Thevenin voltage and impedence, do not include Z_L) for the circuit output $v_{out}(t)$.
- b) Determine the impedence Z_L at output $v_{out}(t)$ that will result in maximal average power deliver to Z_L . Determine this maximum average power delivered to Z_L .

- 2) (25) Consider the circuit below.
- a) Let $R_3 = R_4$. What is the voltage at the positive input of the opamp?
- **b)** Assuming a), write two nodal equations by hand.
- c) From b) find the transfer function $H(s) = V_{out}(s)/V_{in}(s)$ by hand.

- 3) (25) Consider the circuit below.
- a) Write MATLAB code to determine the transfer function $H(s) = V_{OUT}(s)/V_{IN}(s)$. Do not solve for the transfer function.
- b) Write matlab code to find the zero state response.
- c) Determine the value of the transfer function H(s) at very high and very low frequencies from physical arguments.

4) (25) Consider a circuit that has the following transfer function.

$$H(s) = \frac{2s+3}{s+4}$$

- a) Find the impulse response, h(t)
- **b)** Find the step response s(t).
- c) If the input to the circuit is $x(t) = 10\cos(2t \pi/4)$, find the output y(t) assuming the above transfer function.