EE213 Exam 1 Solutions

1)

a) The circuit is a voltage divider and we have $V_{T h}=V_{i n}(10 / j) /((10 / j)+10)=7.0711 \angle\left(-45^{\circ}\right)$.

The Thevenin impedence is given by $Z_{T h}=10 \|(10 / j)+10+10 j=(15+5 j) \Omega$.
b) $Z_{L}=Z_{T h}^{*}=(15-5 j) \Omega$ and maximal power is $P=\left|V_{T h}\right|^{2} /\left(8 * \operatorname{Re}\left(Z_{T h}\right)\right)=5 / 12=.4167 W$.
2)
a) Let the voltage at the input of the opamp be labeled as B, then $B=V_{\text {out }} / 2$.
b) Let the voltage at the node between R_{1} and the two capacitors be A, then we have at input of negative input of opamp

$$
V_{\text {out }} / 2\left(s C_{2}+1 / R_{2}\right)-A s C_{2}-V_{\text {out }} / R_{2}=0
$$

Manipulating equation we have $A=V_{\text {out }}\left(s C_{2}-1 / R_{2}\right) /\left(2 s C_{2}\right)$. At other node we have

$$
A\left(1 / R_{1}+s C_{1}+s C_{2}\right)-V_{\text {out }}\left(s C_{1}+s C_{2} / 2\right)=V_{\text {in }} / R_{1}
$$

c) Manipulating first equation we have $A=V_{\text {out }}\left(s C_{2}-1 / R_{2}\right) /\left(2 s C_{2}\right)$. Then substituting into second equation we have that

$$
\left.V_{\text {out }}\left(\left(s C_{2}\right)-1 / R_{2}\right)\left(1 / R_{1}+s C_{1}+s C_{2}\right) /\left(2 s C_{2}\right)-s C_{1}-s C_{2} / 2\right)=V_{\text {in }} / R_{1}
$$

Then we have that

$$
H(s)=\frac{-2 s /\left(R_{1} C_{1}\right)}{s^{2}+s\left(1 /\left(R_{2} C_{1}\right)+1 /\left(R_{2} C_{2}\right)-1 /\left(R_{1} C_{1}\right)\right)+1 /\left(R_{1} C_{1} R_{2} C_{2}\right)}
$$

3) Let B be the voltage at the node to the right of R_{1} and D the voltage at the output of the left opamp.

$$
\begin{aligned}
& \text { a) >> syms R R1 R2 R3 R4 C C2 Vin Vout B D s H t vin vout; } \\
& \gg \operatorname{mat}=[\mathrm{s} *(\mathrm{C}+\mathrm{C} 2)+1 / \mathrm{R} 1-\mathrm{s} * \mathrm{C} 20 \text { 0 }-\mathrm{s} * \mathrm{C}-1 / \mathrm{R} 20 ; 0-1 / \mathrm{R} 3-1 / \mathrm{R}] \text {; vec=[1/R1; 0; 1/R4]; } \\
& \gg H=s i m p l i f y\left(\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] * i n v(m a t) * v e c\right) \\
& H=(C * R * R 2 * s) /\left(R 3 *\left(C * R 1 * s+C 2 * R 1 * s+C * C 2 * R 1 * R 2 * s^{\wedge} 2+1\right)\right)-R / R 4 \\
& \text { b) } \gg \text { Vin }=\text { laplace (vin); Vout }=\text { Vin * H; vout }=\text { ilaplace (Vout) }
\end{aligned}
$$

c) At both high frequencies capacitors short and at low frequencies capacitors open. For both cases we have that the right opamp is an inverting amplifier with $V_{\text {out }}=-R / R_{4} V_{\text {in }}$.
4)

$$
H(s)=\frac{2 s+3}{s+4}=2-\frac{5}{s+4}
$$

a) $h(t)=2 \delta(t)-5 \exp (-4 t) u(t)$.
b) $s(t)=\mathcal{L}^{-1}((2 s+3) / s(s+4))=(.75+1.25 \exp (-4 t)) u(t)$.
c) $y(t)=10|H(j 2)| \cos \left(2 t+\pi / 4+\angle(H(j 2))=11.18 \cos \left(2 t-18.4349^{\circ}\right)\right.$.
1)
a) The circuit is a voltage divider and we have $V_{T h}=V_{i n}(20 j) /(10+20 j)=17.8885 \angle\left(26.5651^{\circ}\right)$.

The Thevenin impedence is given by $Z_{T h}=10 \|(20 j)+30-10 j=(38-6 j j) \Omega$.
b) $Z_{L}=Z_{T h}^{*}=(38+6 j) \Omega$ and maximal power is $P=\left|V_{T h}\right|^{2} /\left(8 * R e\left(Z_{T h}\right)\right)=320 / 304=1.0526 \mathrm{~W}$.
2)
a) Let the voltage at the input of the opamp be labeled as B, then $B=V_{\text {out }} / 2$.
b) Let the voltage at the node between R_{1} and the two capacitors be A, then we have at input of negative input of opamp

$$
V_{\text {out }} / 2\left(s C_{2}+1 / R_{2}\right)-A / R_{2}=0
$$

Manipulating equation we have $A=V_{\text {out }}\left(s C_{2}+1 / R_{2}\right) /\left(2 / R_{2}\right)$. At other node we have

$$
A\left(1 / R_{1}+s C_{1}+1 / R_{2}\right)-V_{\text {out }}\left(s C_{1}+1 /\left(2 R_{2}\right)\right)=V_{\text {in }} / R_{1}
$$

c) Manipulating first equation we have $A=V_{\text {out }}\left(s C_{2}+1 / R_{2}\right) /\left(1 / 2 R_{2}\right)$. Then substituting into second equation we have that

$$
\left.V_{\text {out }}\left(\left(s R_{2} C_{2}\right)+1\right)\left(1 / R_{1}+s C_{1}+1 / R_{2}\right) / 2-s C_{1}-1 /\left(2 R_{2}\right)\right)=V_{\text {in }} / R_{1}
$$

Then we have that

$$
H(s)=\frac{2 /\left(R_{1} C_{1} R_{2} C_{2}\right)}{s^{2}+s\left(1 /\left(R_{1} C_{1}\right)+1 /\left(R_{2} C_{1}\right)-1 /\left(R_{2} C_{2}\right)\right)+1 /\left(R_{1} C_{1} R_{2} C_{2}\right)}
$$

3) Let B be the voltage at the output of the leftmost opamp and D be the voltage at the output of the center opamp.
```
a) >> syms R R1 R2 R3 R4 R6 C1 C2 Vin Vout B D s H t vin vout;
>> mat=[s*C1+1/R2 0 1/R3; 1/R4 s*C2 0; 0 1/R 1/R6]; vec=[-1/R1;0; 0];
>> H =simplify([[0 0 1]*inv(mat)*vec)
    H}=(R2*R3*R6)/(R1*(C1*C2*R*R2*R3*R4*s^2 + C 2*R*R3*R4*s + R 2*R6))
b) >> Vin = laplace(vin); Vout = Vin * H; vout = ilaplace(Vout)
```

c) At high frequencies the capacitors short and $H(s)=0$. At low frequencies the capacitors open and the circuit acts as an inverting amplifier with $H(s)=-R_{3} / R_{1}$.
4)

$$
H(s)=\frac{s+3}{s+2}=1+\frac{1}{s+2}
$$

a) $h(t)=\delta(t)+\exp (-2 t) u(t)$.
b) $s(t)=\mathcal{L}^{-1}((2 s+3) / s(s+4))=(.1 .5-0.5 \exp (-2 t)) u(t)$.
c) $y(t)=10|H(j 2)| \cos \left(2 t+\pi / 4+\angle(H(j 2))=12.748 \cos \left(2 t+33.6901^{\circ}\right)\right.$.

