EE213 Exam 2
 April 23, 2014

Closed Book, Justify all work unless otherwise instructed.

Good Luck

NAME

student ID number \qquad

1	$/ 25$
2	$/ 25$
3	$/ 30$
4	$/ 20$
TOTAL	$/ 100$

1) (25) Consider the following system where the impulse response is given by $h(t)=\exp (-t) u(t)$ and the input is given by $x(t)=\exp (t)(u(t)-u(t-2))$.
a) Use the convolution integral to compute the output $y(t)$ by hand.
b) For the given impulse response above find the natural response.
2) (25) Consider the circuit below with no input and output voltage given by out (t). Let the leftmost capacitor have an initial voltage $v_{C_{1}}(0)=1 V$ and the rightmost capacitor have an initial voltage of $v_{C_{2}}(0)=2 V$. Both voltages are from left to right. Let $C_{1}=C_{2}=1 F, R_{1}=1 \Omega$, and $R_{2}=1 \Omega$. Find the zero input response.

3) (30) Consider the circuit below with input voltage $i n(t)$ and output voltage out (t). Here $R_{1}=$ $R_{2}=1 \Omega, C=1 F, L_{1}=1 H$, and $L_{2}=0.5 H$.
a) Determine the state of the system (find $x(t)$) labeling direction of appropriate voltages and currents.
b) Find the state space representation; A, b, c, d.
c) Write MATLAB code to find the total response given the input is $i n(t)=\exp (-2 t) u()$ and the initial voltage of the capacitor from top to bottom is $v_{C}(0)=1 V$, the initial current of the inductor from left to right is $i_{L_{1}}(0)=1 A$, and the initial current of the second inductor from top to bottom is $i_{L_{2}}(0)=1 \mathrm{~A}$.

4) (20) Consider the following four transfer functions. For each transfer function find all poles and all zeros. Then match each transfer function with one of the four plots of step responses.

$$
\begin{aligned}
& H_{1}(s)=\frac{5}{s^{2}+6 s+5} \\
& H_{2}(s)=\frac{s^{2}}{s^{2}+6 s+18} \\
& H_{3}(s)=\frac{6 s}{s^{2}+6 s+5} \\
& H_{4}(s)=\frac{6 s}{s^{2}+6 s+18}
\end{aligned}
$$

Mahanaloha

