EE213 Exam 2 Solutions

1)

a) Perform convolution $y(t)=x(t) * h(t)$. Here we will flip $h(t)$. This results in

$$
y(t)= \begin{cases}0 & t<0 \\ \int_{0}^{t} \exp (-2 \tau) \exp (-2(t-\tau)) d \tau=t \exp (-2 t) & 0 \leq t \leq 3 \\ \int_{0}^{3} \exp (-2 \tau) \exp (-2(t-\tau)) d \tau=3 \exp (-2 t) & t>3\end{cases}
$$

b) First find step response $s(t)=\int_{0}^{t} \exp (-2 \tau) d \tau=1 / 2(1-\exp (-2 t)) u(t)$. Then $n(t)=s(\infty)-$ $s(t)=1 / 2-s(t)$. Therefore

$$
n(t)= \begin{cases}1 / 2 & t<0 \\ 1 / 2 \exp (-2 t) & t \geq 0\end{cases}
$$

2) This problem can be solved by either using a state space approach or by adding step voltage sources for each initial condition. Here we use the state space approach. The state is given by $x(t)=\left[v_{C_{1}}(t), v_{C_{2}}(t)\right]^{T}$ where both voltages are from left to right. Note that out $(t)=-v_{C_{2}}(t)$. We then have

$$
C_{1} \frac{d v_{C_{1}}(t)}{d t}=-v_{C_{1}}(t)\left(1 / R_{1}+1 / R_{2}\right)+v_{C_{2}}(t) / R_{1}, \quad C_{2} \frac{d v_{C_{2}}(t)}{d t}=-v_{C_{1}}(t) / R_{1}
$$

Substituting values we have that

$$
A=\left[\begin{array}{ll}
-3 & 1 \\
-2 & 0
\end{array}\right], b=[0,0]^{T}, c=[0,-1], d=0
$$

We then get that $O u t(s)=c(s I-A)^{-1} x(0)=[0-1]\left[\begin{array}{cc}s+3 & -1 \\ 2 & s\end{array}\right]^{-1}[2,1]^{T}=\frac{1-s}{s^{2}+3 s+2}$. Taking the inverse Laplace Transform we get that

$$
\operatorname{out}(t)=(-3 \exp (-2 t)+2 \exp (-t)) u(t)
$$

3)

a) Let all currents and voltages go from left to right or top to bottom. Then define $x(t)=$ $\left[v_{C}(t), i_{L_{1}}(t), i_{L_{2}}(t)\right]^{T}$.
b) Write node and mesh equations to get that

$$
\begin{gathered}
C \frac{d v_{C}(t)}{d t}=-v_{C}(t) / R_{2}+i_{L_{2}}(t) \\
L_{1} \frac{d_{L_{1}}(t)}{d t}=-i_{L_{1}}(t) R_{1}-i_{L_{2}}(t) R_{1}+i n(t) \\
L_{2} \frac{d_{L_{2}}(t)}{d t}=-v_{C}(t)-i_{L_{1}}(t) R_{1}-i_{L_{2}}(t) R_{1}+i n(t) \\
\operatorname{out}(t)=v_{C}(t)
\end{gathered}
$$

Substituting values we have that

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & -1 \\
-1 & -2 & -2
\end{array}\right], b=[0,1,1]^{T}, c=[1,0,0], d=0
$$

```
c)
>> syms s H Inp Out t inp out;
>>A=[-1 0 1;0 -1 -1; -1 -2 -2];B=[0; 1; 1];C=[1 0 0];D=0;
>> H=D+C*inv(s*eye(size(A))-A) *B;
>> inp = exp(-2*t)*heaviside(t); Inp=laplace(inp);
>> Out = H*Inp + C*inv(s*eye(size(A))-A)*[lllll
>> out = ilaplace(Out) *heaviside(t);
```

4) $H_{1}(s)$ has a zero at 0 and poles at $-2 \pm j 2$. Step response matches Waimea.
$H_{2}(s)$ has a double zeroes at 0 and double poles at -2 . Step response matches Kalalau.
$H_{3}(s)$ has poles at $-2 \pm j 2$. Step response matches Mahanaloha.
$H_{4}(s)$ has double poles at -2 . Step response matches Honopu.
5)

a) Perform convolution $y(t)=x(t) * h(t)$. Here we will flip $h(t)$. This results in

$$
y(t)= \begin{cases}0 & t<0 \\ \int_{0}^{t} \exp (\tau) \exp (-(t-\tau)) d \tau=1 / 2(\exp (t)-\exp (-t)) & 0 \leq t \leq 2 \\ \int_{0}^{2} \exp (\tau) \exp (-(t-\tau)) d \tau=1 / 2(\exp (4-t)-\exp (-t)) & t>2\end{cases}
$$

b) First find step response $s(t)=\int_{0}^{t} \exp (-\tau) d \tau=(1-\exp (-t)) u(t)$. Then $n(t)=s(\infty)-s(t)=$ $1-s(t)$. Therefore

$$
n(t)= \begin{cases}1 & t<0 \\ \exp (-t) & t \geq 0\end{cases}
$$

2) This problem can be solved by either using a state space approach or by adding step voltage sources for each initial condition. Here we use the state space approach. The state is given by $x(t)=\left[v_{C_{1}}(t), v_{C_{2}}(t)\right]^{T}$ where both voltages are from left to right. Note that out $(t)=-v_{C_{2}}(t)$. We then have

$$
C_{1} \frac{d v_{C_{1}}(t)}{d t}=-v_{C_{1}}(t)\left(1 / R_{1}+1 / R_{2}\right)+v_{C_{2}}(t) / R_{1}, \quad C_{2} \frac{d v_{C_{2}}(t)}{d t}=-v_{C_{1}}(t) / R_{1}
$$

Substituting values we have that

$$
A=\left[\begin{array}{ll}
-2 & 1 \\
-1 & 0
\end{array}\right], b=[0,0]^{T}, c=[0,-1], d=0
$$

We then get that $O u t(s)=c(s I-A)^{-1} x(0)=[0-1]\left[\begin{array}{cc}s+2 & -1 \\ 1 & s\end{array}\right]^{-1}[2,1]^{T}=\frac{-2 s-3}{s^{2}+2 s+1}$. Taking the inverse Laplace Transform we get that

$$
\operatorname{out}(t)=-(2 t \exp (-t)+\exp (-t)) u(t)
$$

a) Let all currents and voltages go from left to right or top to bottom. Then define $x(t)=$ $\left[v_{C}(t), i_{L_{1}}(t), i_{L_{2}}(t)\right]^{T}$.
b) Write node and mesh equations to get that

$$
\begin{gathered}
C \frac{d v_{C}(t)}{d t}=-v_{C}(t) / R_{1}-i_{L_{1}}(t)+i n(t) / R_{1} \\
L_{1} \frac{d_{L_{1}}(t)}{d t}=v_{C}(t)-i_{L_{1}}(t) R_{2}+i_{L_{2}}(t) R_{2} \\
L_{2} \frac{d_{L_{2}}(t)}{d t}=i_{L_{1}}(t) R_{2}-i_{L_{2}}(t) R_{2} \\
\operatorname{out}(t)=i_{L_{1}}(t) R_{2}-i_{L_{2}}(t) R_{2}
\end{gathered}
$$

Substituting values we have that

$$
A=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
1 & -1 & 1 \\
1 & 2 & -2
\end{array}\right], b=[1,0,0]^{T}, c=[0,1,-1], d=0
$$

c)

```
>> syms s H Inp Out t inp out;
>>A=[-1 -1 0;1 -1 1; 0 2 -2];B=[1; 0; 0];C=[0 1 -1];D=0;
>> H=D+C*inv(s*eye(size(A))-A)*B;
>> inp = exp(-4*t)*heaviside(t); Inp=laplace(inp);
>> Out = H*Inp + C*inv(s*eye(size(A))-A)*[lllll
>> out = ilaplace(Out) *heaviside(t);
```

4) $H_{1}(s)$ has poles at $-1,-5$. Step response matches Honopu.
$H_{2}(s)$ has double zeroes at 0 and poles at $-3 \pm j 3$. Step response matches Mahanaloha.
$H_{3}(s)$ has a zero at 0 and poles at $-1,-5$. Step response matches Waimea.
$H_{4}(s)$ has a zero at 0 and poles at $-3 \pm j 3$. Step response matches Kalalau.
