EE213 Spring 1999
Problem Set 6
due 3/8

1)
a) Refer to Fig. P8.30. At time 0 find the current through the inductor and the voltage across the capacitor. Use Laplace transforms to solve for the current through the inductor $i_L(t)$ for $t \geq 0$.
b) Repeat a) for Fig. P8.32.

2) Refer to HW #4 problem 2) and let $C_1 = C_2$. Let $v_i(t) = 1V$ and assume that one volt has been applied to the circuit for a long time. Then after this long period of time (at time 0), the voltage source $v_i(t)$ is turned off. Calculate at time 0 the voltage at the output v_o and also the voltage across each capacitor. Find $v_o(t)$ for $t \geq 0$.

3) For the following circuits write the state equations. Compute the Laplace Transform of the state transition matrix, $(sI - A)^{-1}$ and find all the natural frequencies. Use matlab to confirm calculations.

4) For problem 1), find the state space representation for parts a) and b) (find A, b, and c). Use matlab to find the transfer function and to solve for $i_L(t)$ using the state space approach.