a) Refer to Fig. P8.30. We first find the initial conditions of the circuit by considering the operation of the circuit when the switch is open for a long time. The capacitor is opened. We then have that $v_C(0) = 20V$ and $i_L(0) = 0A$. To handle initial conditions we add a current source in parallel with the capacitor whose Laplace transform is $I_C(s) = 20/(1/Cs) = 20C$ where $C = 5\mu F$. We then apply a source transformation to get an external current source $I_i(s) = 160m/s$ in parallel with $I_C(s)$. These two current sources are added to get $I(s) = 20C + 160m/s$ and are in parallel with two resistors, a capacitor, and an inductor. Equivalent resistor is 25Ω and inductor is $312.5mH$. This is just a current divider circuit and we get that the transfer function is

$$H(s) = \frac{I_L(s)}{I(s)} = \frac{1/sL}{sC + 1/R + 1/sL} = \frac{\omega_0^2}{s^2 + 2s\omega_0/Q + \omega_0^2}$$

(1)

Here we have $\omega_0 = 800$ and $Q = 1$. This is a critically damped system with repeated poles at $s = -800$. We then get that

$$I_L(s) = \frac{1m(s = 2\omega_0)\omega_0^2}{s(s + \omega_0)^2} = .1m(2/s - 2/(s + \omega_0) - \omega_0/(s + \omega_0)^2).$$

By taking the inverse Laplace transform we get that

$$i_L(t) = (160 - 160e^{-800t} - 64000e^{-800t})u(t)mA.$$

b) Refer to Fig. P8.32. Again we find the initial conditions by opening the capacitor and shorting the inductors to get $v_C(0) = 50V$ and $i_L(0) = 100mA$. We then apply a source transformation to get $I_i(s) = 20m/s$. the circuit is again a parallel RLC circuit with $R = 2500\Omega$, $C = .25\mu F$, and $L = 4H$. The transfer function is the same as equation (1) with $\omega_0 = 1000$ and $1/Q = 1/(.64)$. This is an underdamped system. The initial conditions are handled the same was as part a) with $I_L(s) = -100mA$ and $I_C(s) = 50C$. We add all the current sources to get $I(s) = -80m/s + .0125mA$. The output current is therefore

$$I_L(s) = I(s) \ast H(s) + 100m/s.$$

The last term accounts for the $100mA$ current source. By inverting we get

$$i_L(t) = (20 + 80e^{-800t}\cos(600t) + 127.5e^{-800t}\sin(600t))u(t)mA.$$
2) Refer to HW #4 problem 2) and let \(C_1 = C_2 \). Let \(v_i(t) = 1V \) and assume that one volt has been applied to the circuit for a long time. Then after this long period of time (at time 0), the voltage source \(v_i(t) \) is turned off. We open the capacitors and note that at time 0, \(v_o(0) = 0 \) and \(x(0) = 1V \) where \(x \) is the voltage at node between two capacitors. We therefore have that voltage at time 0 across each capacitor is 1V.

Add two 1V voltage sources across each capacitor. We then write two node equations at \(x \) and at input of negative terminal of opamp to get

\[
(2sC + 1/R_1)X - sCV_o = 2C
\]

and

\[
sC X + (1/R_2)V_o = C.
\]

These equations can be solved manually or by matlab to get

\[
V_o(s) = \frac{\omega_0 Q}{s^2 + 2s\omega_0/Q + \omega_0^2}
\]

where \(\omega_0^2 = 1/(R_1 R_2 C^2) \) and \(Q = \sqrt{(R_2/R_1)} \). Poles are \(p_+ \) and \(p_- \). By taking inverse Laplace transform we get that

\[
v_o(t) = \frac{\omega_0 Q}{p_+ - p_-}(e^{-p_-t} - e^{-p_+t})u(t)
\]

This is just the difference of two decaying exponential when \(Q < 1 \). For the other two cases we have the critically damped case when \(Q = 1 \) and a decaying exponential sinusoid when \(Q > 1 \).

3) For first circuit let \(x = [v \ i]' \). The state equations are

\[
\frac{dv}{dt} = -.01v - i
\]

\[
\frac{di}{dt} = v.
\]

Here we have

\[
A = \begin{bmatrix} -.01 & -1 \\ 1 & 0 \end{bmatrix} \quad (sI - A)^{-1} = \frac{1}{D(s)} \begin{bmatrix} s & -1 \\ 1 & s + .01 \end{bmatrix}
\]

where \(D(s) = \det(sI - A) = s^2 + .01s + 1 \) and the roots of \(D(s) \) are the natural frequencies given by \(s = -.005 \pm j/999975 \).

For second circuit let \(x = [v \ i]' \). Here let node voltage between capacitor and inductor be \(a \). The equations are

\[
\frac{dv}{dt} = -a/2 - i
\]

\[
\frac{di}{dt} = a/4 - i
\]
\[a = v + \frac{dv}{dt}. \]

Eliminate \(a \) to get state variable equations

\[\frac{dv}{dt} = -1/3v - 2/3i \]
\[\frac{di}{dt} = 1/6v - 7/6i \]

Here we have

\[A = \begin{bmatrix} -1/3 & -2/3 \\ 1/6 & 7/6 \end{bmatrix} \quad (sI - A)^{-1} = \frac{1}{D(s)} \begin{bmatrix} s + 7/6 & -2/3 \\ 1/6 & s + 1/3 \end{bmatrix} \]

where \(D(s) = \text{det}(sI - A) = s^2 + 3/2s + 1/2 \) and the roots of \(D(s) \) are the natural frequencies given by \(s = -0.5, -1. \)

Matlab commands: syms s; phi = inv(s*eye(2)-A); nf = solve(det(s*eye(2)-A))

4) Both circuits are parallel RLC circuits with state equations similar to problem 3a). Here we have \(x = [v \ i]' \). In variable form we have

\[A = \begin{bmatrix} -1/(RC) & -1/C \\ 1/L & 0 \end{bmatrix} \quad b = \begin{bmatrix} 1/C \\ 0 \end{bmatrix} \quad c = [0 \ 1] \]

a) Here we have \(1/RC = 1600, \ 1/C = 2 \times 10^5, \) and \(1/L = 3.2. \)

b) Here we have \(1/RC = 1600, \ 1/C = 4 \times 10^6, \) and \(1/L = 0.25. \)

Matlab commands to get overall response: syms s; phi=inv(s*eye(2)-A); xinit= [vinit; iinit]; U = vin/s; Vout= c*phi*b*U + c*phi*xinit; vout=ilaplace(Vout)