EE645
Machine Learning
Fall 2009
Instructor: Anthony Kuh
POST 205E / 484 Holmes
Dept. of Electrical Engineering
University of Hawaii
Phone: 956-7527, 956-4214
Email: kuh@hawaii.edu
Preliminaries

- Class Meeting Time: MW 9:10-10:25(389 Holmes) after this week
- Website: Laulima
- Office Hours: MW 10:30-12 or by appointment
 - Probability: EE342 or equivalent
 - Random variables, Bayes analysis, Gaussian RVs and Gaussian processes
 - Linear Algebra: vector and matrix operations
 - Programming: Matlab or C experience
Objectives and Grading

Topics: Machine learning, pattern recognition, signal processing, neural networks, applications

Objectives: obtain basic understanding and knowledge of fundamental concepts of machine learning, learn about current research in area, conduct project on topic of current research

Grading:
- Homework: 30%
- Exam: 30%
- Final project: 40% (oral presentation and written report)
Motivation

- Develop paradigms for learning that mimic features of natural learning for applications in engineering and science
- Processing data: CPUs and storage device technology have improved dramatically, algorithm development to process data has not increased nearly as rapidly
- Multidisciplinary area requiring tools from EE, CS, Statistics, Physics, Math, Biology
Overview of Course Material

- Linear algorithms for classification and regression
 - Linear Threshold Unit (Perceptron Learning Algorithm)
 - Optimum margin classifiers
 - Linear Unit
 - LMS Algorithm
 - Least Squares Algorithm
Overview Continued

- **Kernel Methods**
 - Optimization methods
 - Kernels
 - Support Vector Machines
 - Least Squares kernel algorithms
 - On-line algorithms

- **Other learning algorithms**
 - Generative classifier: Naive Bayes
 - Discriminative classifier: Logistic regression
 - Multilayer networks: Backpropagation
Overview Continued

● **Learning Theory Tools**
 - Bayesian decision theory
 - Learning and generalization
 - Structural risk minimization
 - Dimensionality and generalization bounds

● **Graphical Models**
 - Bayesian Networks
 - Conditional independence
 - Inference
Overview Continued

- Other Topics
 - Mixture Models and EM
 - Ensemble Learning and boosting

- Unsupervised Learning
 - Component Analysis: PCA, Kernel PCA, ICA
 - Competitive Learning
 - Self – Organizing Feature Maps
 - Vector quantization
Overview Continued

- Reinforcement learning:
 - Markov decision processes and dynamic programming
 - TD learning, Q learning
Historical Notes

- 1940s: Hebb, *The organization of behavior*, McCulloch-Pitts model, Von Neumann
- 1970s-1980s: Pioneers (Grossberg, Amari, Kohonen), Hopfield, PDP Group
- 1990s-2000s: Multidisciplinary area (machine learning, statistics, physics, biology), mathematical rigor (learning theory, kernel methods, reinforcement learning, Bayesian learning, unsupervised learning)
Applications

- Character recognition
- Text classification
- Biomedical classification: disease diagnosis
- Bioinformatics: gene sequencing and protein classification
- Time series prediction
- Communication applications
References

- Websites: IEEE CIS, INNS, Neural Computation, NIPS, IJCNN, kernel machines, machine learning