Linear Units

A. Preliminaries

\[y = s = w^T x \]
Model Assumptions and Parameters

- Training examples \((x(k), d(k))\) drawn randomly, second order zero mean sequences.

- Parameters
 - Inputs: \(x(k) \in \mathbb{R}^n\)
 - Weights: \(w(k) \in \mathbb{R}^n\)
 - Outputs: \(y(k) = w(k)^T x(k)\)
 - Desired outputs: \(d(k)\)
 - Error: \(e(k) = d(k) - y(k)\)

- Error criterion (MSE)
 \[
 \min J(w) = E \left[.5(e(k))^2 \right]
 \]
Define $P = E(x(k)d(k))$ and $R = E(x(k)x(k)^T)$.

$J(w) = .5 \ E[(d(k)-y(k))^2]$

$= .5E(d(k)^2) - E(x(k)d(k))^T w + w^T E(x(k)x(k)^T) w$

$= .5E[d(k)^2] - P^T w + .5w^TRw$

Note $J(w)$ is a quadratic function of w. To minimize $J(w)$ find gradient, $\nabla J(w)$ and set to 0.

$\nabla J(w) = -P + Rw = 0$

$Rw = P$ (Wiener solution)

If R is nonsingular, then $w = R^{-1}P$.

Resulting MSE $= .5E[d(k)^2] - .5P^TR^{-1}P$
Gradient based iterative algorithms

- Steepest descent algorithm (move in direction of negative gradient)
 \[w(k+1) = w(k) - \mu \nabla J(w(k)) = w(k) + \mu (P - Rw(k)) \]

- Least mean square algorithm (approximate gradient from training example)
 \[\hat{\nabla} J(w(k)) = -e(k)x(k) \]
 \[w(k+1) = w(k) + \mu e(k)x(k) \]
Steepest Descent Convergence

- \(w(k+1) = w(k) + \mu (P-Rw(k)) \); Let \(w^* \) be solution.

 Center weight vector \(v = w - w^* \)

- \(v(k+1) = v(k) - \mu (Rv(k)) \); Assume \(R \) is nonsingular.

 Decorrelate weight vector \(u = Q^{-1}v \) where \(R = Q\Lambda Q^{-1} \) is the transformation that diagonalizes \(R \).

- \(u(k+1) = (I - \mu \Lambda)u(k) \), \(u(k) = (I - \mu \Lambda)^k u(0) \).

 Conditions for convergence \(0 < \mu < 2/\lambda_{\text{max}} \).
Step Size μ

μ too large

μ too small
Rate of Convergence

- Rate of convergence depends on eigenvalues, λ_i as convergence rate for this eigenvalue is $(1 - \mu \lambda_i)$. Key eigenvalues are λ_{min} and λ_{max}.

- Fastest rate of convergence achieved when setting $\mu = 2 / (\lambda_{\text{min}} + \lambda_{\text{max}})$. This results in smallest and largest eigenvalue having same convergence rate.

- Convergence of SD depends on condition number of matrix $\lambda_{\text{max}} / \lambda_{\text{min}}$.
Energy Function

- Energy Function:
 \[J(w) = \frac{1}{2} \sigma_d^2 P^T w + \frac{1}{2} w^T R w \]
 For optimal weight \(R w^* = P \) and
 \[J_{\text{min}} = J(w^*) = \frac{1}{2} \sigma_d^2 - \frac{1}{2} P^T w^* \]
- SD energy function behavior
 \[J(w(k)) = J_{\text{min}} + \frac{1}{2} (w(k) - w^*)^T R (w(k) - w^*) \]
 \[= J_{\text{min}} + \frac{1}{2} u(k)^T \Lambda u(k) \]
 \[= J_{\text{min}} + \frac{1}{2} \sum_i (I - \mu \lambda_i)^{2k} u_i(0)^2 \]
LMS Algorithm

- SD requires knowledge of R and P. In many applications these second order statistics are unknown.
- Least mean square algorithm
 \[\nabla J(w(k)) = -e(k)x(k) \]
 \[w(k+1) = w(k) + \mu e(k)x(k) \]
- LMS algorithm is an iterative noisy gradient descent algorithm that approximates SD from one training example.
- LMS algorithm attempts to find weight that minimizes mean squared error cost function, J(w).
LMS Algorithm Properties

- Steepest Descent and LMS algorithm convergence depends on step size μ and eigenvalues of R.
- LMS algorithm is simple to implement.
- LMS algorithm convergence is relatively slow.
- Tradeoff between convergence speed and excess MSE.
- LMS algorithm can track training data that is time varying.
LMS Convergence Behavior

- Assumptions: \(x(n) \) iid sequence, \(x(n) \) independent of \(d(n-k), \ k > 0 \), \(d(n) \) independent of \(y(n-k), \ k > 0 \), \(x(n) \) and \(d(n) \) are jointly Gaussian.

- Mean convergence analysis: Let \(e^*(k) = d(k) - w^T x(k) \), denote error from optimal weight at time \(k \).
 - \(E(v(k+1)) = (I - \mu R) E(v(k)) + \mu E(x(k)e^*(k)) \)
 - Asymptotically assuming step size is chosen correctly, then \(\lim_k E(v(k)) = 0 \) and \(E(w(k)) \) converges to \(w^* \)

- Mean squared analysis studies cost function \(J(w(k)) \). Note \(\text{tr}(R) > \lambda_{\text{max}} \) and more conservative bound given by \(0 < \mu < 2 / \text{tr}(R) \).
Iterative Algorithm Comments

- Algorithms based on descending energy surface by examining first and second derivatives.
- LMS (stochastic gradient descent), tradeoffs between algorithm complexity and convergence speed.
- Can use other cost functions besides quadratic cost functions: Absolute error, Minkowski error, entropy function.
- Can apply to nonlinear activation units or multi-layer networks.
- Levenberg-Marquardt algorithm: another approximation of energy function using Taylor series. Uses pseudo inverse and can approximate Newton’s method or gradient descent.
Least Squares Algorithm

- Let \((x(k),d(k)), 1 \leq k \leq m\) then LS algorithm finds weight \(w\) such that squared error is minimized. Let \(e(k) = d(k) - w^Tx(k)\), then cost function for LS algorithm given by \(J(w) = .5\sum_k e(k)^2\).

- In matrix form can represent
 \[J(w) = .5 \|d-Xw\|^2 = .5\|d\|^2 - d^TXw + .5w^TX^TXw \]
 where \(d\) is vector of desired outputs and \(X\) contains inputs arranged in rows.
Least Squares Solution

- Let X be the data matrix, d the desired output, and w the weight vector.
- Previously we showed that

 $$J(w) = 0.5 \|d - Xw\|^2 = 0.5\|d\|^2 - d^T Xw + 0.5w^T X^T X w$$

 where d is vector of desired outputs and X contains inputs arranged in rows.
- LS solution given by $X^T X w^* = X^T d$ (normal equation) with $w^* = X^d$. If $X^T X$ is of full rank then $X^d = (X^T X)^{-1} X^T$.
- Output $y = X w^*$ and error $e = d - y$
- Desired output often of form $d = X w^* + v$
Adaptive Filter

\[y(n) = \sum w_i u(n-i) \]

\[e(n) = d(n) - \sum y(n) \]
Data Presentation

Windowed data

\[X = \begin{bmatrix}
 u(k) & u(k-1) & \cdots & u(k-n+1) \\
 u(k-1) & u(k-2) & \cdots & u(k-n) \\
 \vdots & \vdots & \ddots & \vdots \\
 u(k-m+1) & u(k-1) & \cdots & u(k-n-m)
\end{bmatrix} \]

\[d = \begin{bmatrix}
 d(k) \\
 d(k-1) \\
 \vdots \\
 d(k-m+1)
\end{bmatrix} \]

Fixed window, growing window, exponential weighted window
Least Squares Solution Comments

- Note LS solution approximates Wiener solution as window size gets large: \(R \approx \frac{1}{m} X^T X, \ P \approx \frac{1}{m} X^T d \)
- Principle of orthogonality (Projection theorem): error orthogonal to data \(e^T X = 0 \) which results in
 \[
 J(w^*) = .5||d||^2 - d^T X w^* = .5||d||^2 - .5d^T X X^\dagger d
 \]
- Normal equations are derived from principle of orthogonality (scalar representation):
 \[
 \Sigma w_j^* \Sigma u(i-k)u(i-j) = \Sigma u(i-k)d(i) \quad k=0\ldots m-1
 \]
- Ridge regression: add regularization term to get
 \[
 w^* = (\lambda I + X^T X)^{-1} X^T d
 \]
Time Correlations

- Let $\Phi = X^T X$, or $\Phi(k,j) = \Sigma u(i-k)u(i-j)$ represent time correlation data matrix
 - Symmetric, positive semi-definite, eigenvalues are nonnegative real numbers
- Let $z = X^T d$, or $z(k) = \Sigma u(i-k)d(i)$ represent time cross-correlation
- LS solution given by $\Phi w^* = z$
Least Squares statistical properties

- Estimate of weight w^* is unbiased
 \[d = X w^* + v \]

- When measurement error process is white with zero mean and variance σ^2 the covariance matrix of the LS estimate w^* equals $\sigma^2 \Phi^{-1}$

- When measurement error process is white with zero mean, the LS estimate w^* is the best linear unbiased estimate

- In addition when the measurement process is Gaussian the LS estimate is the same as the maximum likelihood estimate and achieves the Cramer-Rao lower bound
Singular Value Decomposition

- LS solution given by $w^* = X^+d$ involves computing the pseudoinverse of the Moore-Penrose generalized inverse of the matrix X. (matlab $w = X\backslash d$ or $w = \text{pinv}(X)*d$)
- Any matrix X can be decomposed into a general eigenvector / eigenvalue decomposition.
 - If X is symmetric we have that $X = Q\Lambda Q^T$
 - For arbitrary X we have that $X = U S V^T$ were S contains singular values and U and V are unitary matrices
SVD Continued

- X (m by n) can be decomposed using SVD to get that $X = USV^T$ where
- S (m by n) with first $\min(m,n)$ rows being a diagonal matrix containing square root of eigenvalues of XX^T and X^TX. Rest of rows are zeros
- U (m by m) is unitary and contains eigenvectors of XX^T
- V (n by n) is unitary and contains eigenvectors of X^TX
- $S = U^TXV$ (matlab $[U,S,V] = \text{svd}(X)$)
SVD Continued

- Note $X = USV^T$ and correlation data matrix $\Phi = X^TX = VS^TSV^T$.
- As number of observations in window grows large we have $R \approx (1/m) \Phi$ and $R = QAQ^T$. Therefore $Q \approx V$ and $\lambda_i \approx (1/m) s_i^2$.
- Methods of obtaining SVD. Matrix operations such as Givens rotations and Householder transformations.
Singular Values and Pseudo-Inverse

- One useful benefit of SVD is that it is easy to express pseudoinverse in terms of SVD terms,
 \[X^\dagger = V(S_i)^T U^T \]

where \(S_i = \begin{bmatrix} \Sigma^{-1} & 0 \\ 0 & 0 \end{bmatrix} \)

- For LS problem assuming \(m > n \) (over determined system and assume \(X^TX \) is of full rank \(n \), then can easily show by substituting \(X=USV^T \) that pseudoinverse is given by above.
Recursive Least Square Algorithm

- Can develop an on-line version of LS algorithm called Recursive LS (RLS) algorithm
- Algorithm based on using Sherman-Morrison-Woodbury formula:

\[
(A + vv^T)^{-1} = A^{-1} - A^{-1} v(1 + v^T A^{-1} v) v^T A^{-1}
\]

where \(A = X^T X\) contains old data and \(v = x(m+1)\) contains new data at time \(m+1\)
- Similar to Kalman filter equations where we update estimate recursively adding new information or innovations.
- Update is \(O(n^2)\) operations
RLS Algorithm Comments

- Often exponentially weighted algorithm implemented. Update correlation matrix, gain factor, and weights.
- Parameters of RLS algorithm: Initial correlation matrix and weight decay factor.
- Convergence is typically an order of magnitude faster than LMS algorithm. Algorithm theoretically converges to zero excess mean squared error and convergence does not depend on eigenvalues.
- Many variations to account for more stable matrix computations: QR and Cholesky factorizations.
Linear Filter Applications

- **Inverse Modeling: Channel Equalization**
- **Adaptive Beamforming**
 - Radar
 - Sonar
 - Speech enhancement
- **System Identification: Plant modeling**
- **Prediction**
- **Adaptive Interference Cancellation: Echo Cancellation**
Nonlinear Methods

- Multilayer feedforward networks: error back propagation algorithm
- Kernel methods:
 - Support Vector Machines (SVM)
 - Least squares methods
 - Radial Basis Functions (RBF)