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Kernel PCA \

Obtain nonlinear features from data

e Can form Kkernel PCA in primal space (R) or dual |
(K).

e Problem closely related to LS SVM

e Must ensure feature data has zero mean

e Applications: Preprocessing data, denoising,
compression, image interpretation

space




KPCA Formulation \

o Kernel PCA uses kernels to max E(0-w" (¢(x) - m )

e Use input data to approximate ensemble average t
the following quantities,®(x) = (¢p(x(1), ..., p(x(m))T
sample covariance matrix, and kernel matrix is

K= (®(x) — 1/m 11T O(x)) (P(x) — 1/m 11T d(x))!

e We can formulate as a QP problem where we
max “2w' Rw

subject to w! w =1 and w= (®(x) — 1/m 11T ®O(x))’

get
, RIS

Xo'

ve another eigenvector /eigenvalue problem K o

Can solve in primal or dual spaces. In dual space \T:e

A QL.




Independent Component Anal>$is\/

PCA decorrelates inputs. However in many instances
we may want to make outputs independent.

U X V/f Y
—> A — —> /
L

Inputs U assumed independent and user sees X.
Goal is to find W so that Y is independent




Applications of ICA \

e Speech Separation: several speech signals are mixed
together (cocktail problem)

e Array antenna processing: several narrowband signals
mixed together from unknown directions

e Hyperspectral Images:images at multiple wavelengths

e Biomedical information: Brain signals, EEG data,
data

Financial market data analysis: extract dominant s




ICA Solution \

Y = DPU where D is a diagonal matrix and P is a
permutation matrix.

\/

e Algorithm is unsupervised. What are assumptions where
learning is possible? All components of U except possibly
one are nongaussian.

e Establish criterion to learn from (use higher order
statistics): information based criteria, kurtosis func@on./

Kullback Leibler Divergence:
D(f,g) = f(x) log (f(x)/g(x)) dx




ICA Information Criterion\

e Kullback Leibler Divergence nonnegative
e Mutual Information I(X:Y) = H(X) — H(X|Y) nonné¢

e Setf to joint density of Y and g to products of marg
of Y then

D(f,g) = -H(Y) + ZH(Y)

which is minimized when components of Y are
independent.

When outputs are independent they will be a
permutation and scaled version of U.

sative
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ICA Preprocessing \

e Signal processing and filtering
e Center data (remove means)

cannot do any more

e Decorrelate data (apply PCA). If data is jointly Gaussian

—




Learning Algorithms \

function established using contrast functions.
e Iterative gradient estimate algorithms can be used.

algorithms that approximate Newton’s methods.
Algorithms have been shown to converge.

e Can learn weights by approximating divergence cos

e Faster convergence can be achieved with fixed point

—




ICA Example

Three signals are linearly mixed

Source signais Separated signals
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FIGURE 10.13 Waveforms on left-hand side: original source signals. Waveforms

on right-hand side: separated source signals.
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