Electronic Design Automation (EDA)

EE 260
University of Hawaii

Outline

- Design Flow
 - Hardware description languages (HDL), e.g., verilog and VHDL
- Programmable Logic
 - PALs and PLAs
 - FPGAs
Simplified Design Flow

Design Problem

Design Circuit

Verify/Simulate Functionality (Debugging)

A description (or a model) of a circuit

Schematic

Hardware Description Language (HDL)
- Verilog or VHDL

Verilog

```verilog
module Xcircuit(a0,a1,a2,y)
input a0, a1, a2;
output y;
wire w1, w2;
assign w1 = a0&a1;
assign w2 = ~a2;
assign y = w1&w2;
endmodule
```

This can be used to simulate design or to implement in hardware

We’ll focus on these, but there’s more!
Design Problem

Design Circuit

Verify/Simulate Functionality (Debugging)

HDL model of a circuit (functional model, can be somewhat abstract)

Logicworks

Draw schematic

Simulate in Logicworks

HDL

Write HDL code

Simulate using tools such as Modelsim synopsis

Design Problem

Design Circuit

Verify/Simulate Functionality (Debugging)

HDL model of a circuit (functional model, can be somewhat abstract)

Synthesize model to get a gate level description

Verify/Simulate Logic and Timing

Implement in hardware
Make sure design is consistent in hardware
Hardware Technologies

- Programmable Logic Devices (PLDs)
 - Programmable Read Only Memory (PROM). Erasable PROMs (EPROMs)
 - Programmable Arrayed Logic (PALs) and Programmable Logic Arrays (PLAs)*
- Field Programmable Gate Arrays (FPGAs)*
- Application Specific ICs (ASICs)
Programmable Logic Arrays (PLAs)

- Programmable technology for combinatorial logic

 Sum of Products

- Array of ANDs followed by an array of Ors. Prefabricated

- Programmable by deleting connections at intersections

Inputs (ordinary and complemented)

Product terms

ANDs

ORs

outputs
Programmable Array Logic (PALs)

- Each OR has its own set of ANDs (product terms).
- Easier to build, faster, and in most cases, it isn’t much of a limitation.

PLD (Programmable Logic Devices)

- Registered PAL
- Can implement a Mealy or Moore circuit
- These things can be big: Complex PLDs (CPLDs)
Field-Programmable Gate Arrays

- **Logic blocks**
 - To implement small combinational and sequential circuits

- **Interconnect**
 - Wires and switches to connect logic blocks to each other and to inputs/outputs

- **I/O blocks**
 - Special logic blocks at periphery of device for external connections

Configurable Logic Block (CLB)
- 5-input, 1 output function or two 4-input, 1 output functions
- Optional register on output

I/O Blocks (IOBs)
Can be configured to any small combinational or sequential circuit. In the case of comb circuits, the flip flops are bypassed.

Xilinx 4000 CLB

Programmable combinational circuits

Flip flops

Multiplexers are used to choose/switch components to be connected

Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Xilinx 4000 Interconnect

We can connect CLBs and IOBs by using wires and PSMs

Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)
Xilinx 4000 IOB

Similar to CLB but it's used to connect pins of the chip with the internal circuit.

Pad can be programmed as an input or output.

FPGA

Galen Sasaki EE 260 University of Hawaii
Final Comments

• ASICs
 – Usually cheaper (in bulk) and better performance
 – Goes to foundary and takes time. Better once final design is done -- no changes

• FPGAs
 – Better for very rapid design and redesign. Good for prototyping but also end design.
 – Better for small numbers of products
 – More expensive, and less in performance